Logo

Random Matrix Theory, Interacting Particle Systems and Integrable Systems

Large book cover: Random Matrix Theory, Interacting Particle Systems and Integrable Systems

Random Matrix Theory, Interacting Particle Systems and Integrable Systems
by

Publisher: Cambridge University Press
ISBN-13: 9781107079922
Number of pages: 528

Description:
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications in physics, engineering, multivariate statistics and beyond. The book contains review articles and research contributions on all these topics, in addition to other core aspects of random matrix theory such as integrability and free probability theory.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: The Matrix CookbookThe Matrix Cookbook
by
The Matrix Cookbook is a free desktop reference on matrix identities, inequalities, approximations and relations useful for different fields such as machine learning, statistics, quantum mechanics, engeneering, chemistry.
(12413 views)
Book cover: CirculantsCirculants
by
The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.
(8823 views)
Book cover: Toeplitz and Circulant Matrices: A reviewToeplitz and Circulant Matrices: A review
by - Now Publishers Inc
The book derives the fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements. Written for students and practicing engineers.
(10241 views)
Book cover: The Theory of MatricesThe Theory of Matrices
by - Chelsea
A concise overview of matrix algebra's many applications, discussing topics such as reviews of matrices, arrays, and determinants; the characteristic equation; associated integral matrices; equivalence, congruence, and similarity; etc.
(7385 views)